Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 737
Filtrar
1.
Nature ; 625(7995): 578-584, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123677

RESUMO

The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.


Assuntos
Eritrócitos , Malária Falciparum , Complexos Multiproteicos , Parasitos , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Anticorpos Neutralizantes/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Microscopia Crioeletrônica , Dissulfetos/química , Dissulfetos/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Merozoítos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Parasitos/metabolismo , Parasitos/patogenicidade , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura
2.
Brain Res ; 1822: 148669, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951562

RESUMO

Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.


Assuntos
Barreira Hematoencefálica , Bradicinina , Adesão Celular , Malária Cerebral , Malária Falciparum , Plasmodium falciparum , Humanos , Bradicinina/metabolismo , Adesão Celular/fisiologia , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Eritrócitos/parasitologia , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Monócitos/fisiologia , Plasmodium falciparum/fisiologia , Barreira Hematoencefálica/fisiopatologia
3.
Front Cell Infect Microbiol ; 13: 997245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089812

RESUMO

Plasmodium falciparum is an Apicomplexa responsible for human malaria, a major disease causing more than ½ million deaths every year, against which there is no fully efficient vaccine. The current rapid emergence of drug resistances emphasizes the need to identify novel drug targets. Increasing evidences show that lipid synthesis and trafficking are essential for parasite survival and pathogenesis, and that these pathways represent potential points of attack. Large amounts of phospholipids are needed for the generation of membrane compartments for newly divided parasites in the host cell. Parasite membrane homeostasis is achieved by an essential combination of parasite de novo lipid synthesis/recycling and massive host lipid scavenging. Latest data suggest that the mobilization and channeling of lipid resources is key for asexual parasite survival within the host red blood cell, but the molecular actors allowing lipid acquisition are poorly characterized. Enzymes remodeling lipids such as phospholipases are likely involved in these mechanisms. P. falciparum possesses an unusually large set of phospholipases, whose functions are largely unknown. Here we focused on the putative patatin-like phospholipase PfPNPLA2, for which we generated an glmS-inducible knockdown line and investigated its role during blood stages malaria. Disruption of the mitochondrial PfPNPLA2 in the asexual blood stages affected mitochondrial morphology and further induced a significant defect in parasite replication and survival, in particular under low host lipid availability. Lipidomic analyses revealed that PfPNPLA2 specifically degrades the parasite membrane lipid phosphatidylglycerol to generate lysobisphosphatidic acid. PfPNPLA2 knockdown further resulted in an increased host lipid scavenging accumulating in the form of storage lipids and free fatty acids. These results suggest that PfPNPLA2 is involved in the recycling of parasite phosphatidylglycerol to sustain optimal intraerythrocytic development when the host resources are scarce. This work strengthens our understanding of the complex lipid homeostasis pathways to acquire lipids and allow asexual parasite survival.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Fosfolipases/metabolismo , Mitofagia , Fosfatidilgliceróis/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/metabolismo , Parasitos/metabolismo , Eritrócitos/parasitologia , Malária/metabolismo
4.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069204

RESUMO

Innovative strategies to control malaria are urgently needed. Exploring the interplay between Plasmodium sp. parasites and host red blood cells (RBCs) offers opportunities for novel antimalarial interventions. Pyruvate kinase deficiency (PKD), characterized by heightened 2,3-diphosphoglycerate (2,3-DPG) concentration, has been associated with protection against malaria. Elevated levels of 2,3-DPG, a specific mammalian metabolite, may hinder glycolysis, prompting us to hypothesize its potential contribution to PKD-mediated protection. We investigated the impact of the extracellular supplementation of 2,3-DPG on the Plasmodium falciparum intraerythrocytic developmental cycle in vitro. The results showed an inhibition of parasite growth, resulting from significantly fewer progeny from 2,3-DPG-treated parasites. We analyzed differential gene expression and the transcriptomic profile of P. falciparum trophozoites, from in vitro cultures subjected or not subjected to the action of 2,3-DPG, using Nanopore Sequencing Technology. The presence of 2,3-DPG in the culture medium was associated with the significant differential expression of 71 genes, mostly associated with the GO terms nucleic acid binding, transcription or monoatomic anion channel. Further, several genes related to cell cycle control were downregulated in treated parasites. These findings suggest that the presence of this RBC-specific glycolytic metabolite impacts the expression of genes transcribed during the parasite trophozoite stage and the number of merozoites released from individual schizonts, which supports the potential role of 2,3-DPG in the mechanism of protection against malaria by PKD.


Assuntos
Malária Falciparum , Parasitos , Animais , 2,3-Difosfoglicerato/metabolismo , Ácidos Difosfoglicéricos/metabolismo , Malária Falciparum/genética , Malária Falciparum/metabolismo , Plasmodium falciparum/genética , Glicólise/genética , Eritrócitos/metabolismo , Expressão Gênica , Mamíferos
5.
Structure ; 31(10): 1143-1144, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802029

RESUMO

In this issue of Structure, Raghavan et al. present the cryo-EM structures of the malaria-associated group A PfEMP1 HB3VAR03 head in both host receptor-free and receptor-bound states. The structures are complemented by biophysical analysis and introduce an innovative model in which host-receptor binding induces conformational changes in a PfEMP1 protein.


Assuntos
Malária Falciparum , Malária , Humanos , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Ligação Proteica
6.
FASEB J ; 37(11): e23235, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819580

RESUMO

Metabolic pathways and proteins responsible for maintaining mitochondrial dynamics and homeostasis in the Plasmodium parasite, the causative agent of malaria, remain to be elucidated. Here, we identified and functionally characterized a novel OPA3-like domain-containing protein in P. falciparum (PfOPA3). We show that PfOPA3 is expressed in the intraerythrocytic stages of the parasite and localizes to the mitochondria. Inducible knock-down of PfOPA3 using GlmS ribozyme hindered the normal intraerythrocytic cycle of the parasites; specifically, PfOPA3-iKD disrupted parasite development as well as parasite division and segregation at schizont stages, which resulted in a drastic reduction in the number of merozoites progenies. Parasites lacking PfOPA3 show severe defects in the development of functional mitochondria; the mitochondria showed reduced activity of mtETC but not ATP synthesis, as evidenced by reduced activity of complex III of the mtETC, and increased sensitivity for drugs targeting DHODH as well as complex III, but not to the drugs targeting complex V. Further, PfOPA3 downregulation leads to reduction in the level of mitochondrial proton transport uncoupling protein (PfUCP) to compensate reduced activity of complex III and maintain proton efflux across the inner membrane. The reduced activity of DHODH, which is responsible for pyrimidine biosynthesis required for nuclear DNA synthesis, resulted in a significant reduction in parasite nuclear division and generation of progeny. In conclusion, we show that PfOPA3 is essential for the functioning of mtETC and homeostasis required for the development of functional mitochondria as well as for parasite segregation, and thus PfOPA3 is crucial for parasite survival during blood stages.


Assuntos
Malária Falciparum , Parasitos , Animais , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Di-Hidro-Orotato Desidrogenase , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Prótons , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/metabolismo , Mitocôndrias/metabolismo , Homeostase , Proliferação de Células , Eritrócitos/metabolismo
7.
Blood ; 142(23): 2016-2028, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37832027

RESUMO

The malaria parasite Plasmodium falciparum invades and replicates asexually within human erythrocytes. CD44 expressed on erythrocytes was previously identified as an important host factor for P falciparum infection through a forward genetic screen, but little is known about its regulation or function in these cells, nor how it may be used by the parasite. We found that CD44 can be efficiently deleted from primary human hematopoietic stem cells using CRISPR/Cas9 genome editing, and that the efficiency of ex vivo erythropoiesis to enucleated cultured red blood cells (cRBCs) is not affected by lack of CD44. However, the rate of P falciparum invasion was reduced in CD44-null cRBCs relative to isogenic wild-type control cells, validating CD44 as an important host factor for this parasite. We identified 2 P falciparum invasion ligands as binding partners for CD44, erythrocyte binding antigen 175 (EBA-175) and EBA-140 and demonstrated that their ability to bind to human erythrocytes relies primarily on their canonical receptors, glycophorin A and glycophorin C, respectively. We further show that EBA-175 induces phosphorylation of erythrocyte cytoskeletal proteins in a CD44-dependent manner. Our findings support a model in which P falciparum exploits CD44 as a coreceptor during invasion of human erythrocytes, stimulating CD44-dependent phosphorylation of host cytoskeletal proteins that alter host cell deformability and facilitate parasite entry.


Assuntos
Eritrócitos , Malária Falciparum , Plasmodium falciparum , Humanos , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Proteínas do Citoesqueleto , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Receptores de Hialuronatos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo
8.
Sci Rep ; 13(1): 12700, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543672

RESUMO

Malaria parasites carry out fatty acid synthesis (FAS) in their apicoplast organelle via a bacterially related (type II) enzymatic pathway. In the vertebrate host, exoerythrocytic Plasmodium stages rely on FAS, whereas intraerythrocytic stages depend on scavenging FA from their environment. In the mosquito, P. falciparum oocysts express and rely on FAS enzymes for sporozoite formation, but P. yoelii oocysts do not express, nor depend on, FAS enzymes and thus rely on FA scavenging to support sporogony. In P. berghei, FAS enzymes are similarly expendable for sporogony, indicating it conforms to the P. yoelii scenario. We show here that P. berghei, unexpectedly, expresses FAS enzymes throughout oocyst development. These findings indicate that P. berghei can employ FAS alongside FA scavenging to maximise sporogony and transmission, and is more similar to P. falciparum than previously assumed with respect to FA acquisition by the oocyst. The ability of oocysts to switch between FAS and scavenging could be an important factor in the non-competitive relationship of resource exploitation between Plasmodium parasites and their mosquito vectors, which shapes parasite virulence both in the insect and vertebrate.


Assuntos
Anopheles , Malária Falciparum , Animais , Oocistos/metabolismo , Plasmodium berghei , Mosquitos Vetores , Malária Falciparum/metabolismo , Anopheles/parasitologia , Ácidos Graxos/metabolismo , Proteínas de Protozoários/metabolismo
9.
Front Cell Infect Microbiol ; 13: 1202276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396303

RESUMO

During Plasmodium falciparum infection in pregnancy, VAR2CSA is expressed on the surface of infected erythrocytes (IEs) and mediates their sequestration in the placenta. As a result, antibodies to VAR2CSA are largely restricted to women who were infected during pregnancy. However, we discovered that VAR2CSA antibodies can also be elicited by P. vivax Duffy binding protein (PvDBP). We proposed that infection with P. vivax in non-pregnant individuals can generate antibodies that cross-react with VAR2CSA. To better understand the specificity of these antibodies, we took advantage of a mouse monoclonal antibody (3D10) raised against PvDBP that cross-reacts with VAR2CSA and identified the epitopes targeted by this antibody. We screened two peptide arrays that span the ectodomain of VAR2CSA from the FCR3 and NF54 alleles. Based on the top epitope recognized by 3D10, we designed a 34-amino acid synthetic peptide, which we call CRP1, that maps to a highly conserved region in DBL3X. Specific lysine residues are critical for 3D10 recognition, and these same amino acids are within a previously defined chondroitin sulfate A (CSA) binding site in DBL3X. We showed by isothermal titration calorimetry that the CRP1 peptide can bind directly to CSA, and antibodies to CRP1 raised in rats significantly blocked the binding of IEs to CSA in vitro. In our Colombian cohorts of pregnant and non-pregnant individuals, at least 45% were seroreactive to CRP1. Antibody reactivities to CRP1 and the 3D10 natural epitope in PvDBP region II, subdomain 1 (SD1), were strongly correlated in both cohorts. These findings suggest that antibodies arising from PvDBP may cross-react with VAR2CSA through the epitope in CRP1 and that CRP1 could be a potential vaccine candidate to target a distinct CSA binding site in VAR2CSA.


Assuntos
Malária Falciparum , Malária Vivax , Gravidez , Camundongos , Feminino , Ratos , Animais , Plasmodium vivax , Epitopos , Plasmodium falciparum/química , Anticorpos Antiprotozoários , Antígenos de Protozoários , Malária Falciparum/metabolismo , Placenta , Sulfatos de Condroitina/metabolismo , Eritrócitos , Ligação Proteica
10.
Blood Adv ; 7(18): 5496-5509, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493969

RESUMO

During development down the erythroid lineage, hematopoietic stem cells undergo dramatic changes to cellular morphology and function in response to a complex and tightly regulated program of gene expression. In malaria infection, Plasmodium spp parasites accumulate in the bone marrow parenchyma, and emerging evidence suggests erythroblastic islands are a protective site for parasite development into gametocytes. Although it has been observed that Plasmodium falciparum infection in late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA sequencing after fluorescence-activated cell sorting of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with P falciparum. Four developmental stages of erythroid cells were analyzed: proerythroblast, basophilic erythroblast, polychromatic erythroblast, and orthochromatic erythroblast. We found extensive transcriptional changes in infected erythroblasts compared with that in uninfected cells in the same culture, including dysregulation of genes involved in erythroid proliferation and developmental processes. Although some indicators of cellular oxidative and proteotoxic stress were common across all stages of erythropoiesis, many responses were specific to cellular processes associated with developmental stage. Together, our results evidence multiple possible avenues by which parasite infection can induce dyserythropoiesis at specific points along the erythroid continuum, advancing our understanding of the molecular determinants of malaria anemia.


Assuntos
Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Eritroblastos/metabolismo , Malária Falciparum/metabolismo , Eritropoese
11.
ACS Nano ; 17(14): 13500-13509, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37435892

RESUMO

Malaria infected erythrocytes utilize the parasite protein VAR2CSA to bind to a unique presentation of chondroitin sulfate (CS) for their placenta specific tropism. Interestingly, many cancers express a similar form of CS, thereby termed oncofetal CS (ofCS). The distinctive tropism of malaria infected erythrocytes and the identification of oncofetal CS, therefore, represent potentially potent tools for cancer targeting. Here we describe an intriguing drug delivery platform that effectively mimics infected erythrocytes and their specificity for ofCS. We used a lipid catcher-tag conjugation system for the functionalization of erythrocyte membrane-coated drug carriers with recombinant VAR2CSA (rVAR2). We show that these malaria mimicking erythrocyte nanoparticles (MMENPs) loaded with docetaxel (DTX) specifically target and kill melanoma cells in vitro. We further demonstrate effective targeting and therapeutic efficacy in a xenografted melanoma model. These data thus provide a proof of concept for the use of a malaria biomimetic for tumor targeted drug delivery. Given the broad presentation of ofCS found across various types of malignancies, this biomimetic may therefore show potential as a broadly targeted cancer therapy against multiple tumor indications.


Assuntos
Malária Falciparum , Malária , Melanoma , Humanos , Antígenos de Protozoários/metabolismo , Biomimética , Sulfatos de Condroitina/metabolismo , Eritrócitos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum
12.
J Biol Chem ; 299(9): 105111, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517694

RESUMO

Upon infection by the malaria parasite Plasmodium falciparum, the glycolytic rate of a red blood cell increases up to 100-fold, possibly contributing to lactic acidosis and hypoglycemia in patients with severe malaria. This dramatic increase in glucose uptake and metabolism was correctly predicted by a newly constructed detailed enzyme kinetic model of glucose metabolism in the trophozoite-infected red blood cell. Subsequently, we expanded the model to simulate an infected red blood cell culture, including the different asexual blood-stage forms of the malaria parasite. The model simulations were in good agreement with experimental data, for which the measured parasitic volume was an important parameter. Upon further analysis of the model, we identified glucose transport as a drug target that would specifically affect infected red blood cells, which was confirmed experimentally with inhibitor titrations. This model can be a first step in constructing a whole-body model for glucose metabolism in malaria patients to evaluate the contribution of the parasite's metabolism to the disease state.


Assuntos
Antimaláricos , Eritrócitos , Glicólise , Malária Falciparum , Modelos Biológicos , Terapia de Alvo Molecular , Plasmodium falciparum , Humanos , Acidose Láctica , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Hipoglicemia , Cinética , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/fisiologia , Trofozoítos/patogenicidade , Trofozoítos/fisiologia , Terapia de Alvo Molecular/métodos , Carga Parasitária
13.
J Biol Chem ; 299(6): 104824, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37196765

RESUMO

With rising cases for the first time in years, malaria remains a significant public health burden. The sexual stage of the malaria parasite infects mosquitoes to transmit malaria from host to host. Hence, an infected mosquito plays an essential role in malaria transmission. Plasmodium falciparum is the most dominant and dangerous malaria pathogen. Previous studies identified a sexual stage-specific protein 16 (Pfs16) localized to the parasitophorous vacuole membrane. Here, we elucidate the function of Pfs16 during malaria transmission. Our structural analysis identified Pfs16 as an alpha-helical integral membrane protein with one transmembrane domain connecting to two regions across parasitophorous vacuole membrane. ELISA assays showed that insect cell-expressed recombinant Pfs16 (rPfs16) interacted with Anopheles gambiae midguts, and microscopy found that rPfs16 was bound to midgut epithelial cells. Transmission-blocking assays demonstrated that polyclonal antibodies against Pfs16 significantly reduced the number of oocysts in mosquito midguts. However, on the contrary, feeding rPfs16 increased the number of oocysts. Further analysis revealed that Pfs16 reduced the activity of mosquito midgut caspase 3/7, a key enzyme in the mosquito Jun-N-terminal kinase immune pathway. We conclude that Pfs16 facilitates parasites to invade mosquito midguts by actively silencing the mosquito's innate immunity through its interaction with the midgut epithelial cells. Therefore, Pfs16 is a potential target to control malaria transmission.


Assuntos
Anopheles , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Proteínas de Membrana/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Vacúolos/metabolismo , Proteínas de Protozoários/metabolismo
14.
Microbes Infect ; 25(3): 105060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36270601

RESUMO

Plasmodium falciparum malaria can cause severe anemia. Even after treatment, hematocrit can decrease. The role of autoantibodies against erythrocytes is not clearly elucidated and how common they are, or what they are directed against, is still largely unknown. We have investigated antibodies against erythrocytes in healthy adult men living in a highly malaria endemic area in Uganda. We found antibodies in more than half of the individuals, which is significantly more than in a non-endemic area (Sweden). Some of the Ugandan samples had a broad reactivity where it was not possible to determine the exact target of the autoantibodies, but we also found specific antibodies directed against erythrocyte surface antigens known to be of importance for merozoite invasion such as glycophorin A (anti-Ena, anti-M) and glycophorin B (anti-U, anti-S). In addition, several autoantibodies had partial specificities against glycophorin C and the blood group systems Rh, Diego (located on Band 3), Duffy (located on ACKR1), and Cromer (located on CD55), all of which have been described to be important for malaria and therefore of interest for understanding how autoantibodies could potentially stop parasites from entering the erythrocyte. In conclusion, specific autoantibodies against erythrocytes are common in a malaria endemic area.


Assuntos
Malária Falciparum , Malária , Masculino , Humanos , Autoanticorpos , Plasmodium falciparum , Eritrócitos , Antígenos de Protozoários , Proteínas de Protozoários , Malária Falciparum/epidemiologia , Malária Falciparum/metabolismo
15.
Int J Biol Macromol ; 226: 143-158, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36470436

RESUMO

VAR2CSA, a multidomain Plasmodium falciparum protein, mediates the adherence of parasite-infected red blood cells to chondroitin 4-sulfate (C4S) in the placenta, contributing to placental malaria. Therefore, detailed understanding of VAR2CSA structure likely help developing strategies to treat placental malaria. The VAR2CSA ectodomain consists of an N-terminal segment (NTS), six Duffy binding-like (DBL) domains, and three interdomains (IDs) present in sequence NTS-DBL1x-ID1-DBL2x-ID2-DBL3x-DBL4ε-ID3-DBL5ε-DBL6ε. Recent electron microscopy studies showed that VAR2CSA is compactly organized into a globular structure containing C4S-binding channel, and that DBL5ε-DBL6ε arm is attached to the NTS-ID3 core structure. However, the structural elements involved in inter-domain interactions that stabilize the VAR2CSA structure remain largely not understood. Here, limited proteolysis and peptide mapping by mass spectrometry showed that VAR2CSA contains several inter-domain disulfide bonds that stabilize its compact structure. Chemical crosslinking-mass spectrometry showed that all IDs interact with DBL4ε; additionally, IDs interact with other DBL domains, demonstrating that IDs are the key structural scaffolds that shape the functional NTS-ID3 core. Ligand binding analysis suggested that NTS considerably restricts the C4S binding. Overall, our study revealed that inter-domain disulfide bonds and interactions between IDs and DBL domains contribute to the stability of VAR2CSA structural architecture and formation of C4S-binding channel.


Assuntos
Malária Falciparum , Malária , Humanos , Feminino , Gravidez , Placenta/metabolismo , Malária Falciparum/metabolismo , Antígenos de Protozoários/química , Estrutura Terciária de Proteína , Plasmodium falciparum/metabolismo , Sulfatos de Condroitina/química , Eritrócitos/metabolismo , Dissulfetos/metabolismo
16.
Adv Sci (Weinh) ; 9(36): e2202944, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36300890

RESUMO

Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.


Assuntos
Malária Cerebral , Malária Falciparum , Humanos , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Plasmodium falciparum/fisiologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Encéfalo/patologia , Eritrócitos/metabolismo
17.
Methods Mol Biol ; 2470: 91-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881341

RESUMO

Plasmodium falciparum expresses variant surface antigens on the surface of mature infected erythrocytes (IEs) for binding to various receptors on host cells (cytoadhesion) to evade host immunity. This enables IEs to sequester in the microvasculature of different organs and tissues of the host, contributing to different outcomes of disease. The in vitro study of cytoadhesion involves the use of IEs and human endothelial cells or other cell lines that express host cell receptors. To enrich for IE populations that bind to certain cell types or receptors, we describe a method for panning mature pigmented trophozoite IEs on cell lines. The method enables coculturing of IEs with cells of interest and the selection of IEs that cytoadhere for continuous culturing. The method serves as a tool for generating IEs with specific cell or cell receptor adhesion phenotypes to allow detailed studies of cytoadhesion interactions.


Assuntos
Malária Falciparum , Plasmodium falciparum , Adesão Celular , Linhagem Celular , Células Endoteliais/metabolismo , Eritrócitos/metabolismo , Humanos , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
18.
Methods Mol Biol ; 2470: 527-536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881372

RESUMO

The pathology of Plasmodium falciparum malaria syndromes, such as cerebral malaria, severe anemia, respiratory distress, and malaria in pregnancy are associated with the cytoadherence of P. falciparum-infected erythrocytes (IEs) to host receptors. To investigate binding of laboratory strains or patient isolates to specific receptors, a relatively simple but informative method is a static binding assay. Purified protein receptors are absorbed onto polystyrene dishes, overlaid with a trophozoite IE suspension and incubated for a fixed time. After washing to remove unbound cells, the plates are fixed, stained, and adherent IEs counted by microscopy. Although simple, this assay requires careful implementation to provide reproducible results, but it is deliverable in relatively low-resource settings and so well matched to using fresh patient isolates for adhesion assays.


Assuntos
Malária Cerebral , Malária Falciparum , Adesão Celular , Eritrócitos/metabolismo , Humanos , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
19.
Trends Parasitol ; 38(8): 618-628, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35641406

RESUMO

The conserved plasmodial surface anion channel (PSAC) mediates nutrient uptake by bloodstream malaria parasites and is an antimalarial target. This pathogen-associated channel is linked to the clag multigene family, which is variably expanded in Plasmodium spp. Member genes are under complex epigenetic regulation, with the clag3 genes of the human P. falciparum pathogen exhibiting monoallelic transcription and mutually exclusive surface exposure on infected erythrocytes. While other multigene families use monoallelic expression to evade host immunity, the reasons of epigenetic control of clag genes are unclear. I consider existing models and their implications for nutrient acquisition and immune evasion. Understanding the reasons for epigenetic regulation of PSAC-mediated nutrient uptake will help clarify host-pathogen interactions and guide development of therapies resistant to allele switching.


Assuntos
Epigênese Genética , Malária Falciparum , Malária , Plasmodium falciparum , Plasmodium , Animais , Epigênese Genética/genética , Epigênese Genética/fisiologia , Eritrócitos/parasitologia , Humanos , Malária/parasitologia , Malária Falciparum/genética , Malária Falciparum/metabolismo , Nutrientes/metabolismo , Plasmodium/genética , Plasmodium/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
20.
Front Cell Infect Microbiol ; 12: 864819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573785

RESUMO

The deadly malaria parasite, Plasmodium falciparum, contains a unique subcellular organelle termed the apicoplast, which is a clinically-proven antimalarial drug target. The apicoplast is a plastid with essential metabolic functions that evolved via secondary endosymbiosis. As an ancient endosymbiont, the apicoplast retained its own genome and it must be inherited by daughter cells during cell division. During the asexual replication of P. falciparum inside human red blood cells, both the parasite, and the apicoplast inside it, undergo massive morphological changes, including DNA replication and division. The apicoplast is an integral part of the cell and thus its development is tightly synchronized with the cell cycle. At the same time, certain aspects of its dynamics are independent of nuclear division, representing a degree of autonomy in organelle biogenesis. Here, we review the different aspects of organelle dynamics during P. falciparum intraerythrocytic replication, summarize our current understanding of these processes, and describe the many open questions in this area of parasite basic cell biology.


Assuntos
Apicoplastos , Malária Falciparum , Parasitos , Plasmodium , Animais , Apicoplastos/genética , Apicoplastos/metabolismo , Ciclo Celular , Divisão Celular , Humanos , Malária Falciparum/metabolismo , Parasitos/metabolismo , Plasmodium/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...